Resistance to TRAIL is associated with defects in ceramide signaling that can be overcome by exogenous C6-ceramide without requiring down-regulation of cellular FLICE inhibitory protein.

نویسندگان

  • Christina Voelkel-Johnson
  • Yusuf A Hannun
  • Ahmed El-Zawahry
چکیده

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily that selectively induces apoptosis in malignant cells. However, not all cancer cells are susceptible to TRAIL and mechanisms of resistance and new strategies to enhance sensitivity are an area of intense investigation. Glucose withdrawal or paclitaxel increase intracellular ceramide, down-regulate cellular FLICE inhibitory protein (cFLIP), and sensitize cells to TRAIL. Therefore, we investigated whether TRAIL resistance is due to ceramide levels and/or defects in ceramide generation following ligand binding. Colon cancer cells isolated from the primary tumor (SW480) and a subsequent metastasis (SW620) of the same patient have different sensitivities to TRAIL. Mass spectrometry was used to compare ceramide content in untreated and TRAIL-treated cells. Overall levels of ceramide were comparable in the cell lines but TRAIL-sensitive SW480 cells contained a higher percentage of C(16)-, and C(18)-ceramide and lower C(24)-ceramides than TRAIL-resistant SW620 cells. Upon TRAIL treatment, ceramide (primarily C(16)-ceramide) increased in SW480 but not SW620 cells. The increase in ceramide occurred with slow kinetics, paralleling caspase-3/7 activation. Combination of C(6)-ceramide with TRAIL resulted in apoptosis of SW620 cells. However, exogenous C(6)-ceramide did not affect levels of cFLIP nor did pretreatment sensitize cells to TRAIL. Exposure to TRAIL prior to ceramide was required to induce apoptosis, suggesting that ceramide plays a role in enhancing or amplifying TRAIL-mediated signaling. Our results suggest that ceramide plays a role in promoting TRAIL-mediated apoptosis and that TRAIL-resistant cancers may benefit from combination therapy with ceramide or agents that enhance ceramide accumulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C6-Ceramide Nanoliposomes Target the Warburg Effect in Chronic Lymphocytic Leukemia

Ceramide is a sphingolipid metabolite that induces cancer cell death. When C6-ceramide is encapsulated in a nanoliposome bilayer formulation, cell death is selectively induced in tumor models. However, the mechanism underlying this selectivity is unknown. As most tumors exhibit a preferential switch to glycolysis, as described in the "Warburg effect", we hypothesize that ceramide nanoliposomes ...

متن کامل

Resistance to radiation-induced apoptosis in Burkitt's lymphoma cells is associated with defective ceramide signaling.

Increased sensitivity to ionizing radiation has been shown to be due to defects in double-strand break repair and mutations in the proteins that detect DNA damage. However, it is now recognized that the cellular radiation response is complex and that radioresistance/radiosensitivity may also be regulated at different levels in the radiation signal transduction pathway. Here, we describe a direc...

متن کامل

Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis.

BACKGROUND The yeast Orm1/2 proteins regulate ceramide biosynthesis. RESULTS Depletion of the mammalian Orm1/2 homologues, ORMDL1-3, eliminates the negative feedback of exogenous ceramide on ceramide biosynthesis in HeLa cells. CONCLUSION ORMDL proteins are the primary regulators of ceramide biosynthesis in mammalian cells. SIGNIFICANCE Therapeutically manipulating levels of the pro-death...

متن کامل

Lcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae.

Long chain sphingoid bases (LCBs) and their phosphates (LCBPs) are not only important intermediates in ceramide biosynthesis but also signaling molecules in the yeast, Saccharomyces cerevisiae. Their cellular levels, which control multiple cellular events in response to external and intrinsic signals, are tightly regulated by coordinated action of metabolic enzymes such as LCB kinase and LCBP p...

متن کامل

Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation

The enhancement of apoptosis is a therapeutic strategy used in the treatment of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, hepatocellular carcinoma (HCC) cells exhibit marked resistance to the induction of cell death by TRAIL. The present study investigated whether rocaglamide, a naturally occurring product isolated from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 4 9  شماره 

صفحات  -

تاریخ انتشار 2005